Brand, N., & Brand, C. (2017, July 31– August 4). Detecting the Undetectable: Lithium by Portable XRF [Paper presentation, S-3]. 2017, 66th Annual Denver X-Ray Conference, Big Sky, Montana, USA. https://www.portaspecs.com/wp-content/uploads/2020/09/DXC_17_BRAND.pdf.
European Commission. (2020, September 3). COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS: Critical Raw Materials Resilience: Charting a Path towards greater Security and Sustainability. [Report]. COM(2020) 474 final, Brussels. https://ec.europa.eu/docsroom/documents/42849
Li, M. Y. H., & Zhou Meifu, Z. M. (2020). The role of clay minerals in formation of the regolith-hosted heavy rare earth element deposits. The American Mineralogist, 105 (1), 92–108. https://doi.org/10.2138/am-2020-7061
Morin-Ka, S. (2018). Detection and distinction of rare earth elements using hyperspectral technologies. In Geological Survey of Western Australia. Report (187), (pp. 16).
Turner, D. J., Rivard, B., & Groat, L. A. (2016). Visible and short-wave infrared reflectance spectroscopy of REE phosphate minerals. The American Mineralogist, 101 (10), 2264–2278. https://doi.org/10.2138/am-2016-5692
Van Gosen, B.S., Verplanck, P.L., Seal, R.R., II, Long, K.R., & Gambogi, J. (2017). Rare-Earth Elements. In Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., & Geological Survey (U.S.) (issuing body). Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply. (pp. O1– O31), Professional Paper 1802, Reston, Virginia U.S. Geological Survey. https://doi.org/10.3133/pp1802O.
Zhou, B., Li, Z., & Chen, C. (2017). Global Potential of Rare Earth Resources and Rare Earth Demand from Clean Technologies. Minerals (Basel), 7 (11), 203–. https://doi.org/10.3390/min7110203